AlphaGo的胜利似乎微不足道,只不过是在人类用来打发空闲时间的游戏中,机器再次超越它的创造者。然而,这一小小成就不仅只是赢得吹牛...
AlphaGo的胜利似乎微不足道,只不过是在人类用来打发空闲时间的游戏中,机器再次超越它的创造者。然而,这一小小成就不仅只是赢得吹牛的权利那么简单。有人甚至将它誉为AI发展“里程碑”,按照这个速度,我们曾经认为遥不可及的事情可能很快变成现实。
想一想你口袋里的智能手机,在你出生的时候,如此小巧而强大的计算机简直就是科学幻想,而现在这些装置无处不在,彻底改变了人们的健康护理、人际关系、商业交易,没有它们的生活似乎已经无法想象。我们正在进入一个新的时代,科技注定将极大地影响、
重塑我们和我们后代的生活。科学家已经发明了一款能够安抚人类的微笑机器人,一款能够让失去手臂的鼓手重新打鼓的机械假肢,当然还有可以让汽车自行驾驶的软件。现在,包括Facebook研究人员在内的AI开发者面临 一 大挑战———创造能够完全理解人类语言和表情微妙差异的程序和机器人。一旦他们获得成功,机器将能够处理大量数据———包括书籍、医疗案例、社交媒体状态更新和面部表情线索等等———进而提升人们与AI互动的体验。我们正在不可避免地迈入一个属于人工智能的时代,不少技术专家警告,AI可能意味着人类的终结。你或许觉得现在讨论这个话题为时过早,但是,很多人并未意识到,从 亚马逊 网站向用户提供的产品选择,到
美国国家安全局的数据监控,机器学习已悄然成为我们日常生活中密不可分的一部分。然而,我们中很少有人真正理解它的意义。
人工智能走进生活
西雅图华盛顿大学的电脑科学家佩德罗·多明戈斯在《主算法:终极学习机器的研究将如何改变世界》一书中指出,人工智能可能让到医院看病成为历史;主算法(MasterA l-gorithm )可能具有与爱因斯坦相对论旗鼓相当的改变世界的力量;而用机器取代人类士兵可能让战争变得更人性化。
电脑科学的终极追求就是一台能够自我学习的机器。传统的编程需要人类用令人抓狂的细节向电脑解释人类的意图。这就是算法的本质:对电脑发布的一系列指令。而机器学习则是给电脑编程,让它具有自主学习的能力。现在,当你搜索网页时,为你选择搜索结果可能就是具有学习能力的程序。亚马逊已经将它用于为用户推荐产品;在线影片
租赁公司 Netflix 用它来推荐电影;社交网站Facebook和 Twitter 用它来选择向你显示哪些帖子。在网上发生的一切几乎都涉及机器学习。
多明戈斯提出的主算法是一种能够从数据中学会一切的算法。将行星运动和斜面的数据喂给它,它就能发现牛顿的“万有引力”论。将DNA晶体学数据喂给它,它就能发现双螺旋结构。将包含癌症患者病历的庞大数据库喂给它,它就能学会诊断并治愈癌症。
机器处理信息和进行复杂运算的能力远远超过人类,它们测试药物和疫苗的速度绝非人类可比。“机器学习”已被用于开发药物,通过电脑模拟的方式,所需的成本和时间相当于传统方法的零头。比如,艾滋病疫苗研究的一大难题在于,艾滋病毒变异的速度非常快。研究者大卫·赫克曼提出,传统疫苗大多只针对一个地方的病毒发起攻击,艾滋病疫苗需要同时攻击不同的地方。但是发现所有这些攻击目标需要处理海量的数据,还需人类无法应对的假设实验。
而攻克癌症的难题在于它并非是一种疾病。每个人的癌症都不相同,随着癌细胞的变异生长,即使在同一个病人身上,今天的癌细胞与6个月前也截然不同。肿瘤的代谢是如此复杂,存在太多的可能变异和分子及环境因素组合,没有人类能够全部掌握。因此,只靠某一种药物无法治愈癌症。机器学习可分析肿瘤基因组、病人基因组和病史,从而预测哪种药物或哪些药物的组合最有效,甚至针对具体癌变设计一种新药。然而,在实现这一切之前,我们需要更先进的机器学习算法。我们还需要病人分享他们的数据,再交给程序去分析学习。分子生物学家兼机器学习研究者大卫·豪斯勒认为,如果能够采集足够多的病人数据,我们将能治愈癌症,除此之外别无他法。