MJ:
对这个问题我想从不同的角度作补充。除了领导层需要对情况作分析决策以外,目前在很多企业,数据分析师的重要性正在提升。这些分析师知道如何处理数据,他们知道如何控制数据的精炼过程。这里谈论一个传统IT人员不具备的技能,我的专业是电脑科学,20年前,这门课主修的是数学运算。5-10年后,主修课程变成了算法和程序设计语言。现在,我的儿子在读AI专业的博士学位,他们学生又重新重视起数学运算和统计学了。而且我们不要忘了,如果数据分析师的工作需要支持企业决策,他们一定要掌握不错的行业知识和具备一定的商业敏感度。
所以这是兜了个圈回到原地了吗?
MJ:
最复杂的问题是不能只用原始的计算机数据和数字运算来处理的。你需要用行业知识来判断什么是有意义的数据,什么是无意义的。这些是业内人员正在做的,并且如Denny所说,他们正是实现内部决策的真实支持者。
基于大量可分析的数据,我们看到了许多的IOT解决方案。这就说到一点,如果客户有数据知识,那还好;如果没有,那么这样泛滥的信息,是否有可能会让他们感到不知所措?他们真的需要具备数据分析这一技能吗?
MJ:
这取决于想建立的是何种数据解决方案,以及在哪里实现数据过滤和门槛设定。举个例子,比如在制冷装置上安装了温度传感器,真正需要掌握的数据信息即是异常情况。如果一切正常,那就没有必要因为大量的普通数据而不知所措。所以说最重要的就是数据一旦产生,就马上导出,整个过程实现数据的智能收集、过滤、提前分析以及快速批量处理。
DL:
让我分享下我们的观点。它对IOT同样适用。简单来说,我们提出智能堆叠的概念,把数据智能与人类大脑作类比。在第一层,大脑在一片狭窄的区域内处理环境数据,拥有较快的反应速度和自发性。在下一层,动作可能有个适当的响应时间,是相对自动化的。再往上,就是我们经常说的增强智能(AI),它是软件的顶层,服务于人类,长期由人类执行政策改变。它帮助人类发现未知的见解,做出更好的,不同的,长期有效的行为调整。所以同理到物联网(IOT),把这三层组合到一起。从工厂水平来说,最底层是机器人,自动作业;往上则更加智能,最高层是受人类控制的软件,帮助人类提出见解,做出更好的决策。
MJ:
有趣的是这些已经影响到了基础设施层。你可能听说过边缘云、多路存取边缘计算或者说是移动边缘计算(MEC),它们都是在数据源头附近就对其进行部分处理。这样做有两个原因,一是可以减少网络延迟,减少决策转换时间;二是可以减少拥挤在核心云的大量数据,提高云利用率。这就可以让用户和管理者接触真正有用的数据。不过我现在解释边缘计算,其实也就是在描述反向内容分发网络(CDN)。
回想下几年前视频点播、直播流行的时候,我们突然发现没有足够多的频带去服务每一位用户,让其拥有单独的流,以此应对可能的延迟。所以,我们将缓存服务器放在最接近终端用户的地方,在那里放置最流行的内容,同时进行一些本地内容导航和处理,比如快速转发、撤销以及内容改编。这就是下游存储和电脑资源优化。如今,网络上有很多不同的播放器,比如Akamai,他们正是通过提供缓存和优化服务来赚取利润的。
再看物联网,和视频行业不同,它的问题不在下游数据端频带不足,而在上游数据数量过多。大量物联网器件产生大批数据,我们要做的就是在上游,数据源头附近放置一些缓存服务,在此收集数据,做基础分析,保证只有有用信息到达云端,再开始进行进一步的分析转化。所以我把边缘计算当做一种反向内容分发网络(CDN),因为它从反方向,用不同的流程实现了同样的功能。
我们知道,不管是投资什么类型的新项目,主要考虑的就是节约成本或者开发新的收入源。但是我总是认为,成本的节约和团队的高效性是趋使作出最终决定的关键因素。您二位能基于此两点与我们举例说明吗?
MJ:
以我们目前正在做的视频分析为例,这是一种使用导入大量举例信息组成闭环回路,形成数据流,最终在监控摄像方面有所应用的技术。在城市中,我们有无数的视频监控,产生了成千上万的数据信息。平常,没有专门的工作人员一直盯着屏幕查看信息,因为这绝对是一项昂贵而低效的的工作方式。诺基亚要做的就是利用技术,帮助分析图像信息。
我们应用很多实例,例如车子方向开反,机场出现混乱,或者一些人或物产生异常活动等等,将它们导入到分析链条中,通过一系列的算法完成场景识别和异常监测。最后增加AI技术之后,系统便能完成自动识别、报警,以及预测异常。利用它,监测系统变得实实在在的可实现了,同时,政府和安保公司便能节省大量成本,只安排少部分人就能达到监测目标。
人工监测的能力是有限的。
MJ:
对的,人工能力有限,并且99.99%的图像信息都是不需要注意的。我们必须尽可能的在数据源头过滤信息,只留有用数据进入下游分析。
DL:
我再给你举几个例子吧。第一个是加速问题解决,其中就以预测性维护为典型。“确保下一步动作是最好的”是预测性维护的目的,以前,在这种目标之下,人工将设备故障的原因分析告知维护助理,当问题发生之后,企业才着手解决。实现自动化和预测性维护之后,机器具备自动预测问题发生的技能,它能够提醒使用者及时维护,将维护费用降至最低,由此节约成本。
另一个例子则是根据顾客群,设计不同的人工智能种类。许多的客户都对人工智能(AI)感兴趣,因为他们发现,竞争对手竟然也在一刻不停地努力吸引顾客群。在这条路上,谁得到了顾客,谁就获得胜利。而大数据分析的重要作用便是理解、预测以及回应顾客的需求。以互联网行业方案开发者和解决者来说,提前知道拥堵的发生,以及作出应对措施将是十分重要的,这也是AI的一项应用。
另一个问题则是实现最优化。如果看过很多商业成果,就能够把一个问题设置为最优化问题。在心中设想:这些是我的沙箱,我要做的就是利用原始数据和KPI,将实现优化作为目标。系统可以帮助实现优化,关键是如何在固定的企业环境中,在之前没有挑战过的领域,获得打破壁垒,优化问题的机会。当然,这种类型的增强智能通常会更加吸引企业高层或者相关政策管理者的关注。
2025-06-16 11:40
2025-06-16 08:15
2025-06-16 08:11
2025-06-14 20:30
2025-06-13 09:41
2025-06-10 11:04
2025-06-10 10:49
2025-06-10 10:08
2025-06-10 10:08
2025-06-08 21:08