卷积神经网络
卷积神经网络(CNN)是受动物视觉皮层启发的多层神经网络。这种架构在包括图像处理的很多应用中都有用。第一个 CNN 是由 Yann LeCun 创建的,当时 CNN 架构主要用于手写字符识别任务,例如读取邮政编码。
LeNet CNN 由好几层能够分别实现特征提取和分类的神经网络组成。图像被分为多个可以被接受的区域,这些子区域进入到一个能够从输入图像提取特征的卷积层。下一步就是池化,这个过程降低了卷积层提取到的特征的维度(通过下采样的方法),同时保留了最重要的信息(通常通过最大池化的方法)。然后这个算法又执行另一次卷积和池化,池化之后便进入一个全连接的多层感知器。卷积神经网络的最终输出是一组能够识别图像特征的节点(在这个例子中,每个被识别的数字都是一个节点)。使用者可以通过反向传播的方法来训练网络。
图 9.LeNet 卷积神经网络架构
对深层处理、卷积、池化以及全连接分类层的使用打开了神经网络的各种新型应用的大门。除了图像处理之外,卷积神经网络已经被成功地应用在了视频识别以及自然语言处理等多种任务中。卷积神经网络也已经在 GPU 上被有效地实现,这极大地提升了卷积神经网络的性能。
长短期记忆(LSTM)
记得前面反向传播中的讨论吗?网络是前馈式的训练的。在这种架构中,我们将输入送到网络并且通过隐藏层将它们向前传播到输出层。但是,还存在其他的拓扑结构。我在这里要研究的一个架构允许节点之间形成直接的回路。这些神经网络被称为循环神经网络(RNN),它们可以向前面的层或者同一层的后续节点馈送内容。这一特性使得这些网络对时序数据而言是理想化的。
在 1997 年,一种叫做长短期记忆(LSTM)的特殊的循环网络被发明了。LSTM 包含网络中能够长时间或者短时间记忆数值的记忆单元。
图 10. 长短期记忆网络和记忆单元
记忆单元包含了能够控制信息流入或者流出该单元的一些门。输入门(input gate)控制什么时候新的信息可以流入记忆单元。遗忘门(forget gate)控制一段信息在记忆单元中存留的时间。最后,输出门(output gate)控制输出何时使用记忆单元中包含的信息。记忆单元还包括控制每一个门的权重。训练算法(通常是通过时间的反向传播(backpropagation-through-time),反向传播算法的一种变体)基于所得到的误差来优化这些权重。
LSTM 已经被应用在语音识别、手写识别、语音合成、图像描述等各种任务中。下面我还会谈到 LSTM。
深度学习
深度学习是一组相对新颖的方法集合,它们从根本上改变了机器学习。深度学习本身不是一种算法,但是它是一系列可以用无监督学习实现深度网络的算法。这些网络是非常深层的,所以需要新的计算方法来构建它们,例如 GPU,除此之外还有计算机集群。
本文目前已经介绍了两种深度学习的算法:卷积神经网络和长短期记忆网络。这些算法已经被结合起来实现了一些令人惊讶的智能任务。如下图所示,卷积神经网络和长短期记忆已经被用来识别并用自然语言描述图片或者视频中的物体。
图 11. 结合卷积神经网络和长短期记忆来进行图像描述
深度学习算法也已经被用在了人脸识别中,也能够以 96% 的准确率来识别结核病,还被用在自动驾驶和其他复杂的问题中。
然而,尽管运用深度学习算法有着很多结果,但是仍然存在问题需要我们去解决。一个最近的将深度学习用于皮肤癌检测的应用发现,这个算法比经过认证的皮肤科医生具有更高的准确率。但是,医生可以列举出导致其诊断结果的因素,却没有办法知道深度学习程序在分类的时候所用的因素。这被称为深度学习的黑箱问题。
另一个被称为 Deep Patient 的应用,在提供病人的病例时能够成功地预测疾病。该应用被证明在疾病预测方面比医生还做得好——即使是众所周知的难以预测的精神分裂症。所以,即便模型效果良好,也没人能够深入到这些大型神经网络去找到原因。
认知计算
人工智能和机器学习充满了生物启示的案例。尽管早期的人工智能专注于建立模仿人脑的机器这一宏伟目标,而现在,是认知计算正在朝着这个目标迈进。
认知计算建立在神经网络和深度学习之上,运用认知科学中的知识来构建能够模拟人类思维过程的系统。然而,认知计算覆盖了好多学科,例如机器学习、自然语言处理、视觉以及人机交互,而不仅仅是聚焦于某个单独的技术。
认知学习的一个例子就是 IBM 的 Waston,它在 Jeopardy 上展示了当时最先进的问答交互。IBM 已经将其扩展在了一系列的 web 服务上了。这些服务提供了用于一些列应用的编程接口来构建强大的虚拟代理,这些接口有:视觉识别、语音文本转换(语音识别)、文本语音转换(语音合成)、语言理解和翻译、以及对话引擎。
继续前进
本文仅仅涵盖了关于人工智能历史以及最新的神经网络和深度学习方法的一小部分。尽管人工智能和机器学习经历了很多起起伏伏,但是像深度学习和认知计算这样的新方法已经明显地提升了这些学科的水平。虽然可能还无法实现一个具有意识的机器,但是今天确实有着能够改善人类生活的人工智能系统。
2025-04-19 09:16
2025-04-18 09:06
2025-04-18 09:06
2025-04-16 13:34
2025-04-16 11:09
2025-04-16 09:03
2025-04-15 09:28
2025-04-13 09:00
2025-04-09 10:28
2025-04-07 09:58