您的位置:首页 > 资讯 > 行业动态 > 正文

锂电潜力已开发至极限?世界需要一场新电池革命

2018-08-07 15:45 性质:转载 作者:网易科技报道 来源:网易科技报道
免责声明:中叉网(www.chinaforklift.com)尊重合法版权,反对侵权盗版。(凡是我网所转载之文章,文中所有文字内容和图片视频之知识产权均系原作者和机构所有。文章内容观点,与本网无关。如有需要删除,敬请来电商榷!)
网易科技讯 8月7日消息,据连线杂志报道,从智能手机到笔记本电脑,从电动汽车到电子烟,锂离子电池正为各种各样的电子产品提供动力。...

  网易科技讯 8月7日消息,据连线杂志报道,从智能手机到笔记本电脑,从电动汽车到电子烟,锂离子电池正为各种各样的电子产品提供动力。但是,随着锂的潜力被开发至极致,研究人员正在努力寻找下一个电池突破点。

  如果你在智能手机上阅读这篇文章,这意味着你正拿着一颗“炸弹”。在防护屏下,锂(一种非常易挥发的金属,一旦与水接触就会被点燃)的化合物正在被分解,并在强大的化学反应中重新构建,这种化学反应为现代世界提供了不可或缺的动力。

  锂正被应用在手机、平板电脑、笔记本电脑以及智能手表中,并且存在于我们的电子烟和电动汽车上。它身轻体软,且属于能量密集型物质,这使它成为便携式电子产品的完美动力之源。但是,随着消费技术变得越来越强大,锂离子电池技术却始终难以跟上步伐。现在,就在全世界都对锂上瘾之际,科学家们正争相重新发明为世界提供动力的电池。

  巨大的发光屏幕、更快的处理速度、快速的数据连接以及轻薄的设计时尚,这些都意味着许多智能手机的电量很难支持使用一整天。有时候,手机用户甚至要多次充电。在使用两年后,很多设备的电池续航时间都会急剧缩短,不得不被扔进垃圾堆。锂的巨大优势也是它最大的弱点。它是不稳定的,可能会爆炸。锂离子笔记本电脑电池的能量与手榴弹相差无几。Ionic Materials创始人兼首席执行官迈克·齐默尔曼(Mike Zimmerman)说:“口袋里有部智能手机就像口袋里揣着煤油一样。”

  齐默尔曼在他位于美国马萨诸塞州沃本(Woburn)的公司研究实验室,亲眼目睹了这种燃烧效果。在一项实验中,一台机器通过电池组驱动钉子,电池组迅速膨胀,就像微波炉里的爆米花一样,然后发出明亮的闪光。过去50年的电池研究始终在性能和安全性之间走钢丝,即在不把锂推向极端的情况下,尽可能多地挤出能量。

  我们现在也在这样做。据预测,到2022年,全球的电池市场规模将达到250亿美元。但消费者认为,在一项又一项的调查中,电池续航时间是智能手机最受关注的功能。随着未来十年能耗更高的5G网络普及,问题只会越来越严重。而对于那些能够解决问题的人来说,他们将会得到巨大的回报。

  Ionic Materials公司只是数十家公司中的一员,它们正在进行从根本上重新思考电池问题的史诗竞赛。不过,这场竞赛被错误的开端、痛苦的诉讼以及失败的初创公司所困扰。但在经过十年的缓慢发展之后,希望仍在。世界各地的初创企业、大学和资金雄厚的国家实验室的科学家们,正在使用复杂的工具寻找新材料。他们似乎即将大幅提高智能手机电池的能量密度和续航时间,并创造更环保、更安全的设备,这些设备将在几秒钟内完成充电,并足够持续全天使用。

  电池通过分解化学物质来发电。自从1799年意大利物理学家亚历山德罗·沃尔塔(Alessandro Volta)发明了电池,用来解决关于青蛙的争论以来,每块电池都有相同的关键部件:两个金属电极——带负电的阳极和带正电的阴极,由被称为电解质的物质隔开。当电池连接到电路时,阳极中的金属原子会发生化学反应。它们失去一个电子,变成带正电荷的离子,并通过电解质被吸引到正极。与此同时,电子(也带负电荷)则会流向阴极。但是它并没有通过电解质,而是通过电路在电池的外部传播,为它连接的设备供电。

  阳极上的金属原子最终会耗尽,此时意味着电池耗尽电量。但在可充电电池中,可以通过充电来逆转这一过程,从而迫使离子和电子回到原位,准备再次启动循环之旅。纯金属制成的电极无法承受原子不断进出的压力而不发生坍缩,因此可充电电池必须使用组合材料,使阳极和阴极通过重复的充电循环保持形状。这种结构可被比作公寓建筑,其中有用于反应性元素的“房间”。可充电电池的性能在很大程度上取决于你能以多快的速度在这些房间里进出,而不会导致建筑物倒塌。

  1977年,年轻的英国科学家斯坦·惠廷汉姆(Stan Whittingham)在新泽西州林登(Linden)的埃克森公司(Exxon)工厂工作,他建造了一个阳极,用铝来形成“公寓街区的墙壁和地板”,用锂作为活性材料。当他给电池充电时,锂离子从阴极移动到阳极,在铝原子之间的空隙中沉淀。当放电时,他们向另一个方向移动,通过电解质回到阴极一侧的空间。

  惠廷汉姆发明了世界上第一个可充电的锂电池,这种硬币大小的电池足以为太阳能手表提供动力。但当他试图增加电压(使更多离子进出)或试图制造更大的电池时,它们就会继续燃烧。1980年,在牛津大学工作的美国物理学家约翰·古德诺夫(John Goodenough)取得了突破。古德诺夫是一名基督徒,曾在第二次世界大战中担任美国陆军气象学家,他也是金属氧化物方面的专家。他怀疑,与惠廷汉姆使用的铝化合物相比,肯定有某种物质能为锂提供更坚固的牢笼。

  古德诺夫指导两名博士后研究人员系统性地在周期表中摸索,用不同的金属氧化物对锂进行比对,看看在它们崩溃前能从其中抽出多少锂。最终,他们确定了锂和钴的混合物,后者是遍布非洲中部的蓝灰色金属。锂钴氧化物可以承受半数锂被拉出的极限。当它被用作阴极时,这代表了电池技术向前迈出了一大步。钴是一种更轻便、廉价的材料,既适用于小型设备也适用于大型设备,而且大大优于市场上的其他材料。

  如今,古德诺夫的阴极几乎出现在地球上的所有掌上设备中,但他并没有从中赚到一分钱。牛津大学拒绝申请专利,他本人也放弃了这项权利。但它改变了可能发生的事情。1991年,经过10年的修修补补,索尼将古德诺夫的锂钴氧化物阴极与碳阳极结合在一起,试图改善其新型CCD-TR1摄像机的电池续航时间。这是第一款用于消费产品的可充电锂离子电池,它改变了整个世界。  

中国浙江省金华市坎迪工厂的生产线上,可以鸟瞰无数电动汽车

上一页12

网友评论
文明上网,理性发言,拒绝广告

相关资讯

关注官方微信

手机扫码看新闻